Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Offshore wind energy development on the Mid‐Atlantic Bight (MAB) portion of the Northwestern Atlantic continental shelf could have adverse impacts on the future of the Atlantic surfclam,Spisula solidissima, fishery. The current and potential future areas designated for offshore wind energy development overlap with the present‐day and projected Atlantic surfclam fishing grounds and so could limit the fishery. Fishery impacts imposed by displacement of fishing outside wind farm areas and possible restrictions on vessel transit through the wind farms were simulated using a spatially explicit fishery model. The distribution of catch, hours fished, landings per unit effort (LPUE), time at sea, fishing mortality, and the number of fishing trips were projected for five time periods encompassing the period of 2016–2055. Simulations showed a significant decline in the mean of all fishery metrics (apart from LPUE) as the area of wind farm restrictions increased in scale. Impacts were consistently larger when vessel transit through and fishing within offshore wind areas were prohibited. Impacts were also larger for MAB regions off New Jersey and Delmarva than regions farther north and east. These simulations highlight the necessity of evaluating future conditions as warming temperatures shift the surfclam range relative to the immobile wind farm locations. The offshore wind industry must consider projected long‐term impacts of developmental expansion on surrounding sedentary benthic species and the commercially important fisheries that rely on them.more » « lessFree, publicly-accessible full text available December 22, 2025
-
Abstract The Atlantic surfclamSpisula solidissimafishery, which spans the U.S. Northeast continental shelf, is among the most exposed to offshore wind energy development impacts because of the overlap of fishing grounds with wind energy lease areas, the hydraulic dredges used by the fishing vessels, and the location of vessel home ports relative to the fishing grounds. The Atlantic surfclam federal assessment survey is conducted using a commercial fishing vessel in locations that overlap with the offshore wind energy development. Once wind energy turbines, cables, and scour protection are installed, survey operations within wind energy lease areas may be curtailed or eliminated due to limits on vessel access, safety requirements, and assessment survey protocols. The impact of excluding the federal assessment survey from wind energy lease areas was investigated using a spatially explicit, agent‐based modeling framework that integrates Atlantic surfclam stock biology, fishery captain and fleet behavior, and federal assessment survey and management decisions. Simulations were designed to compare assessment estimates of spawning stock biomass (SSB) and fishing mortality (F) for scenarios that excluded the survey from (1) wind energy lease areas or (2) wind energy lease areas and potential wind energy lease areas (“call areas”). For the most restricted scenario, the simulated stock assessment estimated 17% lower SSB relative to an unrestricted survey, placing it below the SSB target. The simulatedFincreased by 7% but was still less than the acceptedFthreshold. Changes in biological reference points were driven by the inability to access the Atlantic surfclam biomass within the wind energy lease areas. Deviations in reference points reflected the proportion of the population excluded from the survey. Excluding the Atlantic surfclam assessment surveys from the regions designated for offshore wind development can alter long‐term stock assessments by increasing uncertainty in metrics that are used to set fishing quotas.more » « less
-
Abstract Rising water temperatures along the northeastern U.S. continental shelf have resulted in an offshore range shift of the Atlantic surfclamSpisula solidissimato waters still occupied by ocean quahogsArctica islandica. Fishers presently are prohibited from landing both Atlantic surfclams and ocean quahogs in the same catch, thus limiting fishing to locations where the target species can be sorted on deck. Wind energy development on and around the fishing grounds will further restrict the fishery. A spatially explicit model of the Atlantic surfclam fishery (Spatially Explicit Fishery Economics Simulator) has the ability to simulate the consequences of fishery displacement due to wind energy development in combination with fishery and stock dynamics related to the species' overlap with ocean quahogs. Five sets of simulations were run to determine the effect of varying degrees of species overlap due to Atlantic surfclam range shifts in conjunction with fishing constraints due to wind farm development. Simulations tracked changes in relative stock status, fishery performance, and the economic consequences for the fishery. Compared to a business‐as‐usual scenario, all scenarios with less‐restrictive fishing penalties due to species overlap exhibited higher raw catch numbers but also greater reductions in revenue and increases in cost after the implementation of wind farms. This analysis serves to demonstrate the response of the Atlantic surfclam fishery to combined pressures from competing ocean uses and climate change and emphasizes the potential for economic disruption of fisheries as climate change interacts with the evolution of ocean management on the continental shelf.more » « less
An official website of the United States government

Full Text Available